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Support Vector Machines

• Given observations taken from p known populations

• Measure f features for each observation

• Construct a method that

1. Places observations into the correct populations

2. Has good generalization ability

• Concentrate on two population case

• Method will use a linear separating surface

• Extensions

– Nonlinear separating surfaces

– Multiple populations
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Sample Applications

• Cancer Diagnosis – 569 observations, 30 features

– Categories – malignant and benign tumors

– Features – cell radius, texture, convexity, symmetry

• Classification of Gene Expressions – 2467 observations, 79 features

– Categories – proteasome, histone, cytoplasmic ribosomal protein

– Features – gene expression vectors at various times

∗ diauxic shift, mitosis, sporulation

• Income Prediction – 48842 observations, 14 features

– Categories – income < or ≥ $50,000

– Features – age, work class, education, occupation

• Forest Cover – 581012 observations, 54 features

– Categories – spruce, ponderosa pine, aspen

– Features – elevation, aspect, slope, soil type

• Intrusion Detection – 4898431 observations, 41 features

– Categories – good and “bad” connections

– Features – duration, protocol, bytes sent
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Target Application

• Income prediction using census data

• 60 million observations

– 100% sampling of population of Britain

– 20% sampling of US population

– 1% sampling of world population
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Separation Problem

• P+ and P− are two populations

• A+ ∈ <m1×k and A− ∈ <m2×k measure characteristics

– m1 and m2 – number of samples

– k – number of features measured per sample

– m1 + m2 � k

• Separate populations with hyperplane: {x | xT w = γ}

A+w > eγ

A−w < eγ

• Normalize

A+w − eγ ≥ 1

A−w − eγ ≤ −1
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Example – separable data
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Misclassification Minimization

• Let D be a diagonal matrix

Di,i =

 1 if i ∈ P+

−1 if i ∈ P−

• Separation condition

D(Aw − eγ) ≥ 1

• Generally problems are not separable

• Minimize misclassification error

minw,γ,y
1
2

‖y‖2
2

subject to D(Aw − eγ) + y ≥ e

8



Example – nonseparable data
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Linear Support Vector Machine

• Select one with maximum separation margin

– Gives good generalization

– Tolerant of small errors in data

• Example formulation

minw,γ,y
1
2

‖w‖2
2 + ν

2
‖y‖2

2

subject to D(Aw − eγ) + y ≥ e

– 2
‖w‖2

2

– separation margin

– ‖y‖2
2 – misclassification error

– ν – weighting of the goals

• Support vectors – observations with active constraint
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Example – separable data
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Example – nonseparable data
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First Order Conditions

• Mixed linear complementarity problem

0 = w − AT DT u

0 = eT DT µ

0 = νy − µ

0 ≤ DAw − Deγ + y − e ⊥ µ ≥ 0

• Substitute w = AT DT µ and y = 1
ν
µ

0 ≤
(
1
ν
I + DAAT DT

)
µ − Deγ − e ⊥ µ ≥ 0

0 = eT DT µ

• Contains rank-k update to a positive definite matrix

• Problem has exactly one solution
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General Framework

• Linear complementarity problem S + RRT −BT

B 0

  x

λ

 +

 c

−b

 ⊥
x ≥ 0

λ free

• Characteristics

– m variables

– n constraints and B has full row rank

– Rank-k update to positive semi-definite matrix
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Interior Point Method

• Apply interior point method to solve

(S + RRT )x − BT λ + c = z

Bx = b

XZe = 0

x ≥ 0 , z ≥ 0

• Perturb complementarity conditions

XZe = τ

• Track solution as τ → 0+

• Maintain x > 0 and z > 0
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Basic Algorithm (OOQP)

• Given σ ∈ [0, 1], (xi, zi) > 0 and λi

• Define residuals

ra = zi − (S + RRT )xi + BT λi − c

rb = b − Bxi

rc = −XiZie + σ (xi)T zi

m

• Generate direction
S + RRT −BT −I

B 0 0

Zi 0 Xi




∆x

∆λ

∆z

 =


ra

rb

rc


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Direction Generation

1. Eliminate ∆z

V := S + (Zi)−1Xi V + RRT −BT

B 0

  ∆x

∆λ

 =

 r1

r2


2. Substitute

∆x = (V + RRT )−1(r1 + BT ∆λ)

3. Solve

W := B(V + RRT )−1BT

W∆λ = r2 + B(V + RRT )−1r1

4. Recover ∆x and ∆z
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Sherman-Morrison-Woodbury Formula

(V + RRT )−1 =

V −1 − V −1R(I + RT V −1R)−1RT V −1

• Never calculate the m × m matrix

• Only form and factor k × k matrix
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Testing Environment

• Workstation specifications

– 296 MHz Ultrasparc

– 768 MB RAM

– 18 GB locally mounted disk

• Data

– 60 million randomly generated observations

– Each observations has 34 features
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Out-of-Core Computation

• Consider a massive support vector machine

– 60 million observations

– 35 features

• Total storage consumption of 3.75 – 18 gigabytes

• In-core solution not possible

• Access data sequentially

• Stream from disk using asynchronous I/O

– Overlap direction calculations with data reads
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Impact on Average Time per Iteration
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Comparison to SVMTorch
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Results – Iterations

0 10 20 30 40 50 60
0

5

10

15

Problem Size in Millions of Observations

Ite
ra

tio
ns

IP Method − Positive Definite
IP Method − Positive Semidefinite

23



Results – Total Time
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Semismooth Method

• Reformulate as a system of equations

• Apply a Newton method to calculate a zero

• Properties

– One solve per iteration

– Implicitly exploits active set information
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Reformulation

• NCP-Functions

φ(a, b) = 0 ⇔ 0 ≤ a ⊥ b ≥ 0

• Fischer-Burmeister function

φF B(a, b) = a + b −
√

a2 + b2

• System of equations

Φi(x) =

 φ(xi, Fi(x, y)) if i ∈ {1, . . . , n}
Gi−n(x, y) if i ∈ {n + 1, . . . , n + m}

• Φ(x∗) = 0 ⇔ x∗ solves complementarity problem
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Basic Algorithm

• Φ(x) is not differentiable - semismooth

• Use semismooth Newton method

– Let Hk ∈ ∂BΦ(xk)

– Calculate direction: dk = −H−1
k Φ(xk)

– Update: xk+1 = xk + αkdk

• αk determined by Armijo linesearch on merit function

Ψ(x) :=
1

2
Φ(x)T Φ(x)

• Ψ(x) is differentiable with ∇Ψ(xk) = HT
k Φ(xk)
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Semismooth Algorithm

1. Calculate Hk ∈ ∂BG(xk) and solve the following
system for dk:

Hkdk = −G(xk)

If this system either has no solution, or

∇f(xk)T dk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇f(xk).

2. Compute smallest nonnegative integer ik such that

f(xk + βik

dk) ≤ f(xk) + σβik

∇f(xk)dk

3. Set xk+1 = xk + βik

dk, k = k + 1, and go to 1.
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General Convergence Theory

Let F : <n → <n be continuously differentiable. Then,

1. The semismooth algorithm applied to ΦF B is
well-defined.

2. If
{
xk

}
is a sequence generated by the semismooth

algorithm applied to ΦF B, then any accumulation
point of

{
xk

}
is a stationary point for

min
x∈<n

Ψ(x)

3. If x∗ is one such accumulation point for which x∗ is a
strongly R-regular solution to the complementarity
problem, then

{
xk

}
→ x∗ at a Q-superlinear rate. If in

addition, F ′ is a locally Lipschitz continuous function
at x∗, then the rate of convergence is Q-quadratic.
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LSVM Specific Semismooth Theory

Let {
(
µk, γk

)
} be a sequence generated by the semismooth

algorithm applied to the following complementarity
problem:

0 ≤
(
1
ν
I + DAAT DT

)
µ − Deγ − e ⊥ µ ≥ 0

0 = eT DT µ

Then {
(
µk, γk

)
} converges to the unique solution (µ∗, γ∗)

and the rate of convergence is Q-quadratic.
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Direction Properties

• ∂BΦ(xk) ⊆
{
Da + DbF

′(xk)
}

for appropriate Da, Db

• In particular

1. Da ≥ 0

2. Db ≥ 0

3. Da + Db > 0

• (Db)i,i = 0 for most observations near solution

– Reduction in work during direction calculation
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Percentage of Observations with (Db)i,i = 0
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Direction Calculation

• Solve the following linear system at each iteration(
Da + Db

(
1
ν
I + DAAT DT

))
∆µ − DbDe∆γ = r1

eT DT ∆µ = r2

• Use block elimination to solve for (∆µ, ∆γ)

y :=
[
Da + Db

(
1
ν
I + DAAT DT

)]−1
DbDe

z :=
[
Da + Db

(
1
ν
I + DAAT DT

)]−1
r1

∆γ := r2−eT DT z
eT DT y

∆µ := y∆γ + z

• Sherman-Morrison-Woodbury formula
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Results – Iterations
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Results – Total Time

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

Problem Size in Millions of Observations

T
ot

al
 T

im
e 

(in
 M

in
ut

es
)

IP Method − Positive Definite
SS Method − Positive Definite

35



Comparison

• Interior-Point Method

+ Solves many different formulations

+ Takes few iterations

– Two solves per iteration

– Always uses all variables

• Semismooth Method

+ Implicitly uses an active set

+ Takes few iterations

+ One solve per iteration

– Restricted to positive definite formulations
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Future Directions

• Public release of codes

– Nonlinear kernels

– Multiple category problems

– Parallel implementation

• Applications

– Solver selection using NEOS data

– Design of protein folding potentials

– Genomics and proteomics

• Ability to solve humongous problems
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